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Abstract. Policy gradient methods are among the most important tech-
niques in reinforcement learning. Despite the inherent non-concave na-
ture of policy optimization, these methods demonstrate good behav-
ior, both in practice and in theory. Hence, it is important to study
the non-concave optimization landscape. This paper aims to provide a
comprehensive landscape analysis of the objective function optimized by
stochastic policy gradient methods. Using tools borrowed from statis-
tics and topology, we prove a uniform convergence result for the empiri-
cal objective function, (and its gradient, Hessian and stationary points)
to the corresponding population counterparts. Specifically, we derive
O(V/IS]|A]/(1 = ~)y/n) rates of convergence, with the sample size n,
the state space S, the action space A, and the discount factor ~. Fur-
thermore, we prove the one-to-one correspondence of the non-degenerate
stationary points between the population and the empirical objective.
In particular, our findings are agnostic to the choice of the algorithm
and hold for a wide range of gradient-based methods. Consequently, we
are able to recover and improve numerous existing results through the
vanilla policy gradient. To the best of our knowledge, this is the first
work theoretically characterizing optimization landscapes of stochastic
policy gradient methods.

Keywords: Reinforcement Learning - Policy Gradient - Nonconvex Op-
timization - Sample Complexity.

1 Introduction

Reinforcement learning (RL) is a machine learning paradigm aimed at building
learning agents capable of making sequential decisions in a dynamic environ-
ment. Recent years have witnessed great successes of RL in many real-world
problems, such as strategy games [1,2], robotics [3], and large language mod-
els [4,5]. Among RL methods, policy gradient (PG) methods [6,7,8] represent
a critical class of algorithms used to search the optimal policy. PG are widely
used due to their inherent advantages. They are applicable to tasks with both
discrete and continuous action spaces. They can function as both model-free and
model-based methods, showcasing their versatility. Moreover, they are capable
of handling function approximation and high-dimensional state-action spaces,
among other benefits.
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The asymptotic convergence of policy gradient has been established decades
ago [6,7,9,8]. With the smoothness and gradient dominance condition, softmax
policy gradient methods converge to global optimum at sub-linear and linear
rates [10,11,12,13]. However, these results require a sufficient exploration as-
sumption and these rates are associated with problem-dependent constants that
could be exponentially large [14]. Moreover, in practice, obtaining access to the
exact gradient of the objective function is not feasible. Thus, stochastic pol-
icy gradient methods are studied [15,16,17,18]. In the stochastic setting, there
exists a body of work studying the sample complexity of global convergence
[19,20,21,22,23,24]. These results rely on techniques such as importance sam-
pling, the use of second-order information or fisher information, and accelera-
tion. The algorithms and techniques therein each possess their own limitations.
Given the non-concave nature of policy optimization, studying the convergence
to first-order stationary points (FOSPs) becomes a natural course of inquiry
[6,25,26,27,28,20,29]. However, FOSPs do not necessarily correspond to local
maxima. The algorithms designed for finding FOSPs may converge to local min-
ima and saddle points that are undesirable for RL tasks. Therefore, this moti-
vates research on second-order stationary points (SOSPs) [15,28,29]. This paper
delves into these concerns by analyzing the underlying optimization landscape.
We provide a uniform convergence of the empirical objective function towards
the population objective function, as well as its gradient and Hessian. For the set
of non-degenerate stationary points encompassing maximal, minimal, and saddle
points of both the population and empirical objective functions, we prove there
is a one-to-one correspondence between them. This provides us with a clearer
perspective on the optimization landscape of stochastic policy gradient methods.
Our results also match some existing sample complexity results with a simpler
algorithm design.

Despite a substantial body of work analyzing the nonconvex optimization
landscape in machine learning and deep learning [30,31,32,33,34,35,36,37,38,39),
a thorough theoretical examination of the optimization landscape of policy gra-
dient algorithms has remained elusive. We notice two recent work [40,41] that
explore the landscape of policy gradient methods, within the contexts of solving
combinatorial problems with deep neural networks and static output feedback
(SOF) control in discrete-time linear time-invariant (LTT) systems, respectively.
Therefore, the settings and results of these work are inherently distinct from
ours.

2 Preliminaries

An infinite-horizon discounted Markov decision process (MDP) [42] is defined by
M(S, A, P,r,7,p). We use A(X) to denote the set of the probability distribution
over the set X. M(S, A, P,r,v,p) is specified by a finite state space S, a finite
action space A, transition function P : S x A — A(S), reward function r :
Sx A — R, and the discount factor v € [0, 1). We assume the reward is bounded,
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i.e. r(s,a) € [0,1], ¥(s,a). Given a policy mg : S — A(A), the expected value
function V' (0) is defined as

V() :=E.[V(0,1):=E,

vaaust)] M

t=0

where the expectation is computed over the following distribution

T ~ p(s0) H mo(at|se)P(si+1]5¢e, ar).
t=0

In reality, the dynamics of the environment are not fully known or are too com-
plex to model accurately, and it is impossible to compute a sum over an infinite
sequence. Therefore, in practice, we sample n trajectories with a finite horizon
H € N, specifically,

{Tz} = {( aé)7r(sél)7aéz))7. Sg) 170’;[) 17T(85LI) 17a(H) 1))}

and the empirical estimate of the value function is defined as

ZvHan = LSSl )

7.1750

By the policy gradient theorem [43], for a differentiable map 6 — g, the gradient
of the expected value function is computed by

> A'r(si,an) Y Velogme(arsk) |, (3)
t=0 k=0

and the REINFORCE gradient estimator [6] is computed by

n H-1
=Y s a Z Vologmo(a|s;). (4)
i=1 t=0 k=0

3 Uniform Convergence Results

We first present the following assumptions regarding the norm of the first-order,
second-order, and third-order derivatives of the score function logmg(als). Note
that these assumptions are common and realistic in many scenarios. We instan-
tiate the results with softmax parametrization in Lemma 1.

Assumption 1. There exists G4 > 0 such that for every action a € A and state
s € S, the gradient of logmg(a|s) satisfies

IVologma(als)llz < G-

! For rewards in [Rumin, Rmax] simply rescale these bounds.
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Assumption 2. There exists Gy, > 0 such that for every action a € A and state
s € S, the Hessian of log mg(als) satisfies

|V log 7rg(a|s)HF < Gh.

Assumption 3. There ezists Gy > 0 such that for every action a € A and state
s € S, the third-order partial derivatives of logmg(a|s) satisfies

HV;’ logwe(a|s)||F < G.

Remark 1. Softmax policy, Gaussian policy with bounded action spaces, and
relative entropy policy serve as instances that satisfy the above assumptions.
The focus on the score function is due to an analytical simplicity. It is impor-
tant to note that the main results in this paper remain applicable if we replace
the score function with the objective function. In that case, policy with direct
parametrization would also satisfy the assumptions, and we left it as a future
work.

Given the function 6 : § x A — R, the tabular policy with softmax
parametrization is defined as

ro(als) = exp(0(s,a)) .
> exp(6(s, )

Lemma 1. The softmaz policy satisfies Assumption 1, 2, and 3 with G4 = V2,
Gr =1, and G; = 3, /|A].

Proof. In the subsequent proof, subscripts are omitted for simplicity. Recall that

% = 0 for s’ # s. Moreover,

Om(als) _ 2

s = n(als) = mlals)
and

Om(als) _ /

By applying the chain rule, we obtain

Ologm(als) 1 On(als)

00(s,-)  m(als) 90(s,-)

Now by letting D(a, 8) = %‘y? and

1, ifi=j
1,']‘:{

0, otherwise,
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it follows that

Di(a,8) = 1ia(n(als) — m(als)?) + (1 = Lia)(—7(als)m(a'|5))
= m(als)(Lia(1 = m(als)) + (1 = Lia)(=7(a's))),

and
dlogm(als) . - o
26(s,1) = 1i(1 — w(als)) + (1 — L) (—n(a’]s)). (5)
Therefore,
0logm(als
H 85(35)) 1+;ﬂ(a/|5)2
< V2.

Next, from (5) we observe that

02 log m(als) _ on(-]s)
00(s,-)? 00(s,-)
= —Diag(n(-|s)) + 7 (-|s)7(:|s)"

and

93 logm(-|s) 0?7 (als)

90(s, )3~ 90(s,)?’
From [20,11], we have Haalgg(i”(als) - < 1. Now letting H(a,) = %;Z((ils)), we
obtain
H; j(a,0)
_ 0{1liqm(als) — mg(als)m(i|s)}
96(s, j)
= 172(1

(Ljam(als) — m(als)m(jls)) — m(als) (Lijm(jls) — m(ils)m(]s))
— (ils) (Ljam(als) — w(als)m(j]s))
= m(als) (Lia (Lo — 7(jls)) — 7(jls) (Lij — 7(ils)) = 7(ils) (Lo — 7(ils)))
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and

93 logm(-|s)
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90(s,-)* g

= [I=Hi;(- 0l

IN

IN

IN

IN

IN

SESneor)
> (zz( ) +Z(H”“ ))))

a j#a 1

ZZ( ,Jae) ma9>

j#a i

SN w(i1)22n(ils) — Lia — 1)2 + 30 (H;“ ))/

j#a 1 i

S 43 w(jls)

i j#a

1/2
+ Z (Lia (1 = m(als)) — m(als) (Lia — 7(ils)) — m(ils) (1 — 7r(aIS)))2>

1/2
(Z D w(ils) + > ((ils)(2m(als) — 1))* +4

j#a i#a

1/2
<4A| + Zw(ds) + 4>

Jm
<3V/]4].

This concludes the proof.

3.1

Theorem 1. Suppose Assumption 1 holds.

Uniform Convergence of Objective

fined in (2) uniformly converges to the expected infinite-horizon discounted value

function. Specifically, if n > max{

18(log(4/€)+|S||A| log(n/€)) 18HGyr
S =2 g = }, then we

Then the truncated estimator de-
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have

36/S||A|log(n/€))  18HG,r
n(l—~)? n(l—7)

sup Vn(H) - V(G)‘ < \/

0co
with probability at least 1 — &, where © = BISIAl(),

Remark 2. In our analysis, the parameter space is confined within a sphere
with radius r, which is permitted to be significantly large, on the order of
O(|S||A|/e(1 — v)Gy). Direct parametrization and Gaussian parametrization
(with bounded action space) are examples that have a constrained parame-
ter space. However, to search for a deterministic optimal policy using softmax
parametrization, the parameter space must be unbounded, marking a limitation
of our results. Nevertheless, we can quantify an error term between the reward
inferred from the constrained parameter and the optimal parameter. This error
diminishes with an increasingly large radius r.

From Theorem 1, one can observe that with increasingly larger sample size
n, the difference between empirical objective and population objective decreases
monotonically. According to the definition of uniform convergence [44], the uni-
form convergence rate of the empirical objective to its population objective is
O(1/+/n) up to a log factor. A direct consequence of this result is that for any
algorithm that finds global optima using the exact gradient across T iterations,
it can be deduced that the stochastic version of the algorithm exhibits a sample
complexity of O(T/€?). For algorithms demonstrating linear convergence, such
as the natural policy gradient and geometry-aware policy gradient [45,12], this
allows for achieving the optimal sample complexity.

3.2 Uniform Convergence of Gradient

Theorem 2. Suppose assumption 1 and 2 hold. Then the truncated gradient
estimator defined in (2) uniformly converges to the gradient of the expected
infinite-horizon discounted value function in Fuclidean morm. Specifically, if

n > max 64HG-‘7|SHA|£Og(n/S), I8HG L then we have
(1=7) (1=7)

64HG,|S||Allog(n/E)  18HGr
n(l—7)? n(l—7v)

6co

sup van(e)) - VV(O)H2 < \/

with probability at least 1 — &, where © = BISIAl(r),

According to Theorem 2, if a point 8 is an ¢/2-stationary point of V'(8), then
for n = (1/€?), 6 is also an e-stationary point of v, (@) with high probability.
With vanilla policy gradient, Theorem 2 provides a sample complexity of O(1/e*)
for finding FOSPs. This improves over the O(1/¢*?) rate in [28], and matches
the O(1/€*) rates in [6,27,20].
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3.3 Uniform Convergence of Hessian

Theorem 3. Suppose assumption 2 and 3 hold. Then the Hessian of
the estimator uniformly converges to the Hessian of the expected infinite-
horizon discounted wvalue function in operator mnorm. Specifically, if n >
HSHGHS”Al;Og(n/&, 18HG”}, then we have

max{ T 1)

sup Hv%fn(a) — V2V (9)
6co

< 128 HG|S||Allog(n/€) N 18HGr
op ~ n(l—7)? n(l—2)

with probability at least 1 — &£, where © = BISIAl(),

Recall that an e-stationary point does not necessarily indicate a local max-
imum, which motivates the study on convergence towards SOSPs. Specifically,
the goal is to achieve convergence to first-order stationary points that are also
local maxima. For this purpose, the eigenvalues of the Hessian must be non-
positive. An e-second-order stationary point and an (e, ,/x€)-second-order sta-
tionary point are defined as follows.

Definition 1 (Second-Order Stationary Point [46]). For the x-Hessian-
Lipschitz function J(-), we say that 0 is an e-second-order stationary point if

”VJ(O)HQ <e and Amax(v2J(0)) < 0;
we say 0 is an (€, /x€)-second-order stationary point if

[VJ(@)]2 <e and  Apax(V2J(0)) < (/Xe

Note that if one matrix qualifies as an e-SOSP and is close to another matrix,
this does not necessarily mean that the second matrix is also an e-SOSP. Consider
a simple example

M, = (_01 6%) and M, = <_01 S/2> .

It follows that ||M; — Ma|lop < ||M1 — Ma|lr < €, yet Amax(M71) > 0 and
Amax(M3) < 0. Hence, based solely on Theorem 3 only, we cannot ensure that if
a point @ is an ¢/2-SOSP of V' (), then 8 is an e-SOSP of V,,(0), regardless of
the value of the sample size n. Surprisingly, such results are attainable through
further analysis, which we will discuss in the subsequent section. We will ana-
lyze non-degenerate stationary points using the results presented in this section.
Non-degenerate stationary points are defined to include local maxima, thereby

fulfilling the criteria for e-SOSPs as desired.
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3.4 Proof Sketch

The proof framework of Theorems 1, 2, and 3 are similar. Thus, we only
sketch the proof of Theorem 1. First, we construct an e-covering net of
the ball BISIIAI(r), 0, = {6,...,0n.}. Next, we define four events E =

supe‘Vn(H)—V(O)‘ > t, By = {supy

% 22;1(‘7(9#:‘) —V(8ie), )| =

B = {swpien |2 X0 V(Bie), ™) ~ EIV(Bigo), 7)]| = £}, and By =
{supg [E[V(0;(9), T)] — E[V(0,7)]| > £}. Now we have P (E) < P(E;)+P(E3)+
P(E3) and we bound them separately. For P(E;) and P(E3), we use the Lip-
schitz constant of the objective function and the properties of e-net to prove
P(E,) < £/2 and P(E3) = 0. Since bounding P(E>) necessitating a further de-
composition, the analysis was extracted in lemmas provided in the appendix.
They subdivide P(E5) into a concentration inequality and a bias term due to
truncation. With specific choices of the sample size and truncation length, it
satisfies that P(E53) < £/2. Lastly, by combining the bounds of the three terms,
we arrive at the desired results.

4 Characterizing the Landscape of Policy Gradient
Methods

Given a set of stationary points {67,...,8;, } of the empirical estimate of the

value function V;,(6), and another set of stationary points {61, .., 6,,,} of the
expected value function V' (0), what are the properties of them? Does there exist
a clear relationship between the two sets of stationary points? This section is
dedicated to addressing these questions.

Definition 2 (Non-degenerate stationary points [47]). If a stationary
point  is said to be a non-degenerate stationary point of F(x), then it satisfies

inf |Xi (V2F(z))| > ¢

where \; (V2F(x)) denotes the i-th eigenvalue of the Hessian V2F(x) and ¢ is
a positive constant.

Definition 3 (Index of non-degenerate stationary points [48]). The in-
dex of a symmetric non-degenerate matriz is the number of its negative eigenval-
ues, and the index of a non-degenerate stationary point x of a smooth function
F is simply the index of its Hessian V*F(x).

We focus on the non-degenerate stationary points of V;,(8) and V(). Non-
degenerate stationary points are stationary points that are geometrically iso-
lated, meaning they are distinct points rather than flat areas. Non-degenerate
stationary points include local minima, local maxima, and non-degenerate saddle
points, in contrast to degenerate stationary points, which are degenerate saddle
points. Now we present our main result.
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Theorem 4. Suppose assumption 1, 2, and 8 hold. Then if n >

CzHG”'EU’%‘JOg("/&, (’E{{_%T} where C' is a constant, for k € {1,...,m},

there exists a non-degenerate stationary point 0}, of Vn(o) which corresponds to
the non-degenerate stationary point 0y, of V(0). In addition, ), and 0y, have the
same non-degenerate index and they satisfy

2
64— ], < \/c HG,|S||Allog(n/€) | CHGr

max {

n(l—7y)? n(l—7)
with probability at least 1 — &.

Theorem 4 establishes a one-to-one correspondence between the non-
degenerate stationary points of the empirical objective function VT,(O) and those
of the population objective function V' (0). Furthermore, the corresponding pairs
have the same non-degenerate index, indicating their corresponding Hessian ma-
trices have the same properties, such as the same number of negative eigenval-
ues. Therefore, given a sufficiently large sample size, the stationary points of
V,(6) and V(6) share similar properties in that they have exactly matching
local minima, local maxima, and saddle points. Although Theorem 4 focuses on
non-degenerate stationary points, Theorem 2 and Theorem 3 ensure that for any
degenerate point 6, the gradient and Hessian of V;,(8) are close to those of V' (8).

Before proving the theorem, we first introduce two lemmas proved in [33].
The first lemma follows a classical result in differential topology (Theorem 14.4.4
in [48]). It states that under certain conditions, the behavior of the critical points
of two distinct functions aligns within a particular region. Lemma 3 states that
the set of non-degenerate critical points can be decomposed into disjoint sets
such that each set contains at most one critical point.

Lemma 2. Let D C R? be a compact set with a C? boundary 0D, and f,g :
A — R be C? functions defined on an open set A, with D C A. Assume that for
all @ € 0D and allt € [0,1], tVf(0) + (1 —t)Vg(0) # 0. Finally, assume that
the Hessian V2 f(0) is non-degenerate and has index equal to r for all @ € D.
Then the following properties hold:

(1) If g has no critical point in D, then f has no critical point in D.

(2) If g has a unique critical point @ in D that is non-degenerate with an index
of v, then [ also has a unique critical point 0’ in D with the index equal to .

Lemma 3. Suppose that F(0) : @ — R is a C* function where 8 € ©.
Assume that {01,...,0,,} is its non-degenerate critical points and let D =
{6 €O :||[VF(0)|2<e and inf; |); (VgF(B))‘ >(}. Then D can be decom-
posed into (at most) countably components, with each component containing ei-
ther exactly one critical point, or no critical point. Concretely, there exist disjoint
open sets { Dy}, cy, with Dy, possibly empty for k > m 41, such that

D = Uzolek.

Furthermore, 0, € Dy for 1 < k < m and each D;,k > m + 1 contains no
stationary points.
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We now present the proof of Theorem 4.

Proof. Consider that the set {61,03, -+ ,0,,} consists of the non-degenerate
critical points for V'(0). As defined, for any 0y, it follows

inf [A} (V2V (6r))| > ¢,

where A¥ (V2V (6;)) denotes the i-th eigenvalue of the Hessian V2V (6y)
and ¢ is a constant. Let D = {0¢€ BISIMI(r)|[[VV ()2 <e and
inf; [A; (V2V (6k))| > ¢}. By Lemma 3, D = U2, D;, where each Dy, is a dis-
joint component with 0, € D;. for k < m and Dj does not contain any critical
point of V(0) for k > m + 1. Moreover, by the continuity of VV(0), it yields
[IVV ()|l = € for 8 € ODy,. Note that the value of € below is a function related
to n. According to Theorem 2, when the sample is sufficiently large, we have

64HG,|S||Allog(n/€) n I8BHGyT 4 €

i n(l — )2 n(l—v) 2

0cBISIIAl(r)

VV,(6) - VV(Q)H2 < \/

with probability at least 1 — £. This implies that for arbitrary 6 € Dy, we have

it [+ a-ovve),
P (VVa(o) - vV(0)) + VV(Q)H2
= eeB\igwA\(r) IVV @)l — HeB\S;alA\(T) t HVVn(G) - VV(G)H2
*y (6)

Similarly, by Theorem 3, when n is sufficiently large we have

sup ]vQVn(e) — V2V (9)

0cBISIIAl (1)

< 128 HG|S|| Al log(n/&) n 18HG,r
op ~ n(1-79)? n(l—7)

<

DOy

with probability at least 1 — £. Assuming that y € R? is a vector satisfying
yTy =1, we bound \¥ (VQVH(G)) for arbitrary @ € Dy, as follows:
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eegliglw(r) A (VQV"(B)) ‘

— inf mi ]TWVno ]
pnf  min |y @)y

_ - 2 o2 T2
_GEB\ngfA\( ym;nl ‘y (V V,.(0) -V V(O))y—i—y \Y V(G)y‘

> . T2 - ’ 2 2 ’
> eeB\lanfA\( )ym;nl ly" V2V (0)y| mm Y (V V,(0) -V V(O)) Y

T2 2 2
2 geaa o B VTV O] s o7 (VV(0) - VIV0)) o)

it 1nf|)\k (V2V(8,)) |—HV2Vn 9) — V2V (9)

eeB\SHA\ op

¢
> 2

: @

This implies that in each set Dy, VQVH(O) has no zero eigenvalues. Combining
(6) and (7), by Lemma 2 we know that if the population risk V() has no critical
point in Dy, then the empirical risk v, (8) has also no critical point in Dy. By
Lemma 2, we can also obtain that in Dy, if V(@) has a unique critical point 6
with non-degenerate index rj, then V, (@) also has a unique critical point 8}, in
D;. with the same index r;. This establishes the first conclusion.

Next, we bound the distance between the corresponding critical points of
V() and V,,(6). Assume that in Dy, V() has a unique critical point @, and
V,,(8) also has a unique critical point @). Then, there exists ¢ € [0,1] such that
for any z € 9B%(1), we have

€= [[VV(6;)l
= max (VV (6)),z)

zTz=1

max <VV (Gk) s Z> + <V2V (Gk +1 (0;C - Hk)) (9;C — Gk) s Z>

ZZ—

2 (Vv (00)" (0~ 00, 6]~ 00))

1/2

o
> 165, — Okll2,

where (a) holds since VV (6;) = 0 and (b) holds since 6 + ¢ (0} — 6y)
is in Dy and for any @ € Dy we have inf; |\; (V2V(0))| > (. Con-
sider the conditions in Theorem 2 and Theorem 3 we obtain that if n >
cn max{cch|5|(|Awlog<n/8) Gtr} then

1—7)

n(l—7)? n(l—7)

holds with probability at least 1 — &, where C' = =2 is a constant. O

2
”%_%%<¢0H%8M«mwa+0H@r
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5 Conclusion

This paper provides a theoretical analysis on the optimization landscape of
stochastic policy gradient methods. We establish uniform convergence of the
empirical objective function, its gradient, and its Hessian, to their expected
counterparts at the rate of O(y/|S||A]/(1 — 7)y/n). Furthermore, we charac-
terize the optimization landscape by establishing a one-to-one correspondence
between the non-degenerate stationary points of the empirical and population
objectives. Although this paper focuses on the landscape from a statistical and
topological perspective, it still matches some existing results even when employ-
ing vanilla policy gradient methods. We hope these results will provide more
insights and deeper understanding of stochastic policy gradient methods.
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A  Technical Lemmas

Lemma 4 ([49]). Let © € R? and A, = {Ay,..., AN} be an e-covering net of
BE(1), then

1
[z < sup (A, ).
— €EXe.

Lemma 5 ([49]). Let X € R¥*? be a symmetric matriz and A = {A1,..., An}
be an e-covering net of BA(1), then

1
X, < A, XN
Xl < T $up 100, X )

Lemma 6. Suppose assumption 1, 2, and 3 hold. For VH(O,T) defined in (2),
we have

[vute.n)|, < 1?37 |Vavae.m)| < fff;v
and
[ivitom], < 1

for any trajectory T with horizon H € NU {co} and 8 € BISIAI(r).

Proof. Let j € {1,2,3}. From (4), we have

H— H-1
HvéVH(O’T H Z r(se; ar) Z Hvelogﬂe(ak\sk)H
t=0 k=0

IN

bupHVg 10g770(ak|5k)H

where G = Gy, G2 = Gy, and G5 = Gy. O

Lemma 7. Under assumption 2 and 3, we have

H]E [VGVH((;,T)] ) [VQV(e,T)}HQ < VIH_G;J ﬁ +H.
and
HE [ngH(e,T)} ~E[V2V(,7)] HF < ZHG; % +H.

While this result was known [20], we included a proof for the sake of com-
pleteness.
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2]
Z Vj log 7y (ars | sxr)

o]

]

Proof. Let j € {1,2}. From (3), we have

HE [vz,va,T)] _E [VgV(e,T)} H2

t
20 (81, a1) 7t/ (ZV log g (ay, | sk)>
=H k=0

(z< ) (ZW

k

Z V) log g (ar: | sir)
k/

<E.

IN
=
3

)

where G = G4 and Gy = Gy,. O

Lemma 8. For anyt > 0, the estimate function Vi (7, T) with H > W

t> < 2exp (;ntz (1— 7)2> .

obeys

P ( %Xn:VH(OaTi) —E[V(6,7)]| >

log(2/t(1—v))
Proof. Let H > W’ we have

%Z (0, 7;) —E[V(0,7T)]

= LS V(. — B [Vu(o.m)] + B [Vu(0,7)] ~ EIVO,7)

IN

iiVH(e,n)—E[VH(am} + |E[Via(6,7)] ~ EIV(6,7)]|

H

IN

% i Vi (0, 7)) — E [VH(e, r)}

1—x




By Hoeflding’s Inequality [50],

( > ;) < 2exp (—;nﬂ (1— 7)2> .

Combining the above inequalities, we conclude the proof. O

ZVH 0 Tz VH(G T)]

Lemma 9. For any t > 0, the gradient VVH(B,T) with H >
log(2G g/ H+(1/1=7)/t(1-7))

Zt>

2

log(1/7) obeys
nt? (1 —~)° + |Allog 5) .

<H ZVQVH (0,7:) —E[VoV(0,7)]

<2exp< HC
g

Proof. Let H > loa(2Gy y Iﬁ;((ll//;w/t(l_m, we have

> Vol (6,7) ~E VoV (6, 7)

=1

2

= 3" Veln(0.7) — B VoVia(6,7)| +E [VoVia(6,7)] ~E[VoV(0,7)

i=1

2

I ene - A ] -
< |5 Yo VoVu(6.m) ~ E [Volu(6,7)]| + |E[VeVi(6.7)] ~E[Vov(e. 7|
i=1 ; "o
1 & . S 7 G, 1
< EZVQVH(O,TZ-)—]E VeVu(8,7)||| + T
i=1 ) “ g

< %Z VoVu(8,7:) —E {VOIA/H(QJ-)] + %

i=1 2

where the second inequality holds since we utilize Lemma 7. Let A;/, be the
1-covering net of Bl4I(1) with |A1)2| < 541, From Lemma 4 we know that

> Vol (0,7) ~E [VoTia(0,7)
i=1

2

<2 sup <A,i2v9VH(0,n) “E [VHVH(G,T)D

)\E)\l/g i—1
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n
1 N N
S 2 sup AaizVQVH(HaTZ) —-E |:<AaV9VH(0’T)>:| .
)\E)\l/z n i=1

Now we have

1 — .
P(|= 0,7,)—E (6,
<’n¥vgvH( ) VoV (0,7)]

i=1

MEA(E Z> c[fssoson)]} =)
: 5|A|>\21>1\11)/2P <<>\’ % iVBVH(G’Ti)> —E [<)\, VBVH(O,T)>] > i)

It can be verified as in the proof of Lemma 6 that the value of
S VQVH(H,Ti)> lie in the range [ H HG } for any A. By Hoeffd-

1—'y ’

ing’s Inequality [50],

P <<>\ % zn:vgvH(a,n)> —E[(X VoV (8,7))] =

i=1

1
< 2exp <_32HG nt* (1 —7)2> .
g

Therefore,
J RN
P ( - ; VoVu(0,7:) —E[VeV (0, 7))
< 2exp <—

PN

N |

)

nt®> (1 —7) + A|log5> .

1
32HG,
O

Lemma 10. For any t > 0, the gradient VVy(0,7) with H >
log(2Gn/ H+(1/1—7)/t(1—7))

1)

F

log(1/7)
> VeVu(6,7:) —E[VEV(6,7)]
nt? (1 —~)> + |A]log 9) .

obeys

1n
p<
n:

i=1
< 2exp (—

1
64HG),

PT'OOf. Let H > IOg(QGh\/ H+(1/1—7)/t(1-7))

oz(1/7) , we have

% Z VeVu(6,7:) —E[V5V(6,T)]

i=1

2
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_ %ngVH(e,n) —E [V3Viu(8,7)| +E [V3Viu(6,7)| — E [V3V(8,7)]
i=1 . - ,
< —Zv Vi(0.7) ~E[V3Vu(6,7)]| +|E[VEVu(0.7)] —E[VEV(6,7)]|,
2
AT B (V20 (0, )] | + G H
>~ E; eH( ,Ti)— | gH( ,T)_ 2—|—1_’y m_k
< %ngvH(07Ti)_]E _VE,VH(G,T)_ —|—%
=1 - o

where the second inequality holds since we utilize Lemma 7. Let A;,4 be the

1-covering net of Bl4I(1) with |A1/4] < 9/41. From Lemma 5 we know that

n

% > VaVu(8,7) ~E V3V (0,7)]

i=1

2

1 n . .
<s.p (3 S witnom -2[ritue.n] )
<2 sup |{ A lzn:VQVH(e )X ) —E [<>\ V2V (0 T))\>:| .
o AEAL /4 7 n i=1 0 Y e 7

Now we have

P ( Ly
<>\, % Z V2V (6, Ti),\> ) [<>\ V2V (0, T),\ﬂ

t
> 2
1)
2

Z ViVu(0,7;,) —E [Vau(0,7)]
<P[ sup
)\E)\1/4 i=1

=1
< oMl sup P <’<>\ % ivgvH(07n)>\> —E[(A V3V (0,7)7)]| =

A€A1/4 i=1

By Lemma 6, we know that <)\, % S Ve VH(Q,Ti))\> is upper bounded by
4 Gh for any A. By Hoeffding’s Inequality [50],
t
> —
1)

1 n . .
P <| <>\, - ; V2V (0, Ti),\> _E [<>\ V2V (0, T)Aﬂ
<2exp|— L nt? (1 —~)>
=P\ TG, )

Therefore,
1< .
P ( o ZEVEVH(&TZ') —E[V5V(0,7)]

N | =+

-3
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< 2exp ( nt? (1 —7)° + |A] log9) .

64HG),

B Proof of Theorem 1

Theorem 5 (Theorem 1 restated). Suppose Assumption 1 holds. Then
the truncated estimator defined in (2) wuniformly converges to the eux-
pected infinite-horizon discounted walue function. Specifically, if n >

18(log(4/£)+|S|| Al log(n/E)) 18HGyr
max{ o5/ E)HISI|Allog(n/E)) | 18HG,y } then we have
. 36|S[|Allog(n/€)) | 18HG,r
sup |V;,(0) — V(6)| < +
sup |Va(6) = V(6) n(l—7)2 n(l—7)

with probability at least 1 — £, where © = BISIAl(),

Proof. According to e-covering theory in [49], it is known that the e-covering
number N, of the ball BISIMI(r) is upper bounded by (& SIAT We assume
0. = {61,...,0y.} is the e-covering net of BISIAI(r). Let 8 € BISIAI(r) be
an arbitrary vector, we have || — ;]| < ¢ for some 0; € {61,...,0x_}. We
denote V(8,7) = limpy_o Vi (0, 7). Note that V,,(8) = IS Vi (6,7;) and
V(0) =E.[V (6, 7)]. Having clarified the aforementioned context, the subscripts
will henceforth be omitted for simplicity. Now for any @ € BISIMI(r) and by the
decomposition strategy we have

V,.(0) — V(e)’ = |- 2 V(6. 7) ~E[V(6,7)]
= % Z V(G, Ti) — % Z V(@i(g), i) + % Z V(ei(9)7 Ti) — E[V(8i(0), T)]
+E[V(0i0), T)] —E[V(0,7)]

IN

NE

(V(0,73) — V(8;0). T:))| +

Y
- > V(6i0), i) — E[V(8i6), )]
=1

1
+ |E[V(850), 7)] — E[V (6, 7)]|

where i(6) = arg min;e(n,) |0 — 6;[|2. Then, we define three events Ey, Es, E3 as

1 - . .
E, = su — VO, 1)—V(0;e),T))| > =",
1 {GeBISIpA(T) n ;( (0,7:) = V(Bie), 7)) 3}
E>; =< sup liV(O 7)) — E[V(8;00), T)] >E
2 ey | m v () Ti i(6)s =30
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t
E; = { sup ‘E[V(Gi(g),T)] — IE[V(G,T)H > 3} .
e BISIIAI (1)

Therefore, we have

V,.(0) — V(O)’ > t) < P(E,) + P(Es) + P(E3).

)

P sup
0cBISIIAl(r)

Next, we first upper bound P(E}).

n

P(E,) = P < sup |1 > (V(0.7) — V(610 7)| >

6€BISIAl() [T

W =+

3 1, .
< 7E su - V 977-2' - V ) 77-1
! LEBSPAM ”;( o7 ) H
3 LY (V(0,7) = V(80),7)
<IE| sup sup  [|0 — B;(e)|l2
0cBISIIAl(r) 10 — 0i0)l2 0 BISIIAl(r)
<

e ~
—E [ sup IVVn(e)Izl ;
t 6 BISIIAl(r)

where the first inequality holds by Markov inequality. By Lemma 6, we have

Zvvan ]
2

vf/(a,r)M

El sup IIVVn(O)Ilzlel

0cBISIIAl(r)

GEB|5HA|(T)

=K l sup
ocBISIIAl(r)

HG,
1—7'

Thus,

and by letting ¢t > ( 3’5 we have

Secondly, we bound P(E3) as follows:

P(E;) =P < sup % Z V(i0), 1) — E[V (8i6), 7)]

1€[N,]
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|S]I-A
< (37‘) sup P
€ i€[Ne] -
|S|I-A]
1
<3:> 2 exp (—18nt2 (1- 7)2>

where the last inequality is due to Lemma 8. Therefore, if we let

n

1
- Z 0i6), 7i) — E[V(0;), T)]

>

L =+

IA

¢~ | 18(og(4/€) + |S||A log(3r/c))
- n(l—7)? ’

then we have

P(E,) <

Thirdly, we upper bound P(E3). Similarly,

P<E3>=n»< sup |E[v<ei<e>,r>1—ﬂ«:[v<e,f>]z§>
gcslAl-1

V(8i0), 7)] —E[V(0,7)]]

t
sup [|0 — ;62 > 3>

sup
<9esA 1 10 — ;o) |2 gesiAl-1
t
<P ( sup [[VV(0 T)llz] > )
feslal-1 3
<€HG t)
<P
By setting ¢ § 1 7) , we ensure that P(E3) = 0. Lastly, we let e = Tg and

L=)E’ n(l —v)?

. { 18HG,r \/18(1og(4/5) + S]] A[log(n/€)) }

‘> max{ 6HG e \/18(10g(4/5) + |S||A] log(Sr/e))}
B (

n(l—=)’ n(l —~)?

to ensure IP’( sup Vn(G)—V(H)‘>t> < &. Therefore, if n >

feslal-1

max { 18(10‘%(4/8):{‘,‘57”)34‘ 10g(n/€))7 1?i(igr }, then with probability at least 1 — &

An(g) _ V(G)‘ < \/36|S||~A| log(n/€)) n 18HG,r

6co n(l—~)32 n(l—7)
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C Proof of Theorem 2

Theorem 6 (Theorem 2 restated). Suppose assumption 1 and 2 hold. Then
the truncated gradient estimator defined in (2) uniformly converges to the gradi-
ent of the expected infinite-horizon discounted value function in Euclidean norm.

Specifically, if n > (?4_2) max{w Ghr} then we have

sup HVVnw) -

(1 —7)? n(l—7)

with probability at least 1 — &£, where © = BISIAl(),

Proof. We adopt a similar proof strategy as in the proof of Theorem 1. Note

that the e-covering number N, of the ball BISII4(r) is upper bounded by
ar Sl We assume 0. = {61,...,0y.} is the e-covering net of BISIAI(r).

Let 0 c B'SHA‘( ) be an arbitrary vector, we have ||@ — 6;|| < e for some 0, €

{61,...,0N.}. We denote V (0, 7) = limy_,o0 Vg (6, 7). For any 8 € BISIAI(),
by the decomposition strategy we have

vafnw) - VV(O)H -

2
n

1 . 1 SN
Z vV(8, ;) — - Z VV(0ie), Ti) + - Z VV(8i9), i) — E[VV(0;6), T)]
i=1

= i=1

+E[VV(8i6), T)] — E[VV(0,T)]

2

n n

1 5 R
- D (VV(0,7i) = VV(0ie), )| +
=1 2

+ |[E[VV (8i9), 7)] — E[VV (0, T)]||,

1 X
- Z VV (i), i) — E[VV(0;0), T)]

n -
=1

2

where i(0) = arg min;en,) |@ — 6;[|2. Then, we define three events Ey, Es, E3 as
FE, = { sup
e BISIAl (1)

.
3

= t

Ey =4 sup Z
? {ze[N 3}

Z (Bi(0), Ti) — E[VV(8iq), T)]
E; = { sup  ||[E[VV(0i(e), 7)) —E[VV(0,7)]|, > ;}

n

1 Z(VV(O, ;) — VV (8,0 Tz))

n-
=1

=1
0cBISIIAl(r)

Accordingly, we have

P ( sup
0cBISIIAl(r)

VV,.(0) - vV (9), > t) <P(By) + B(Ey) + P(Ey).
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Next, we first upper bound P(E}).

n

L ) o t
P(E,) =P sup — vV (0,7;) — VV(0ie). T: b
) <9€BSAI(T) n;( ( ) ( (0) ) 3>
3. 1
<TE|  sup |2 (VV(0,7) — VV(8ie), i)
=t _geB\s\I\DA‘(T) n ;( ( ) i(0) ]
' LSI(VV(0,7) ~ V(00 7)||,
<-E sup sup
oeBISIAm) 16— 91(0)”2 0cBISIIAl(r)
< g sup O)H ’
t |eepIsial(r 2

25

10 — 6;(0)ll2

where the first inequality holds by Markov inequality. By Lemma 6, we have

. 1 < .
E| sup VQV,L(O)H —E| suwp ||- Y. VV(0,7)
0cBISIIAl(r) 2 ocBISIAl() || T = )
=E sup V2V(97T)H
0cBISIIAl(r) 2
< HG) .
(1=7)
Thus,
3HGhe
P(B) < 5o
t(1—7)
and by letting t > ?HG% we have
P(E,) < §
2
Secondly, we bound P(E3) as follows:
t
P(E;) = ( SF]\I? ZVV i0), Ti) — E[VV(049), T)]|| > 3>
1S 2

Z VV —E[VV(0i9),7)]|| =

|SIIA
< (3T> sup P
€ i1€[N]

g\ 18114 L, ,
<|— 2 - t* (1 - All
<(%) 7 2ew (gt a0+ |og5)

where the last inequality is due to Lemma 9. Therefore, if we let

. \/ 32HG,(log(4/€) + |S||A| log(3r/e) + |A|log(5))
- n(l—7)? ’

2

)
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then we have
P(E;) <

Thirdly, we upper bound P(E3). Similarly,

P(E;) =P ( sup  |[E[VV (8i0), 7)] — EIVV (6, 7)]], > ;)
0€ BISIIAI(r)

E[VV (8,0, 7)) — E[VV (8,
SP( N 0 N A )| |90i(9)|22t>

ocBISIIAl(r) 16 — 0;6)ll2 ocBISIIAl(r) 3
t
an Ivvien) > 1)
)

IN

Pl eE
0 BISIIAl(y 3

P ( eHG), > t> ‘
(1-v) —3
By setting € < tg(Ilf_G’L), we ensure that P(E3) = 0. Lastly, we let e = % and

IN

£ > max { OHGe \/ 32H Gy (log(4/€) + | S||.A] log(3r/e) + | A] log(5)) }
- (

1—9)& n(l—7)?
~ max 18HGpr [32HG4(log(4/E) + |S||Allog(n/E) + |Allog(5))
o n(l—+x)’ n(l—)?

to ensure IP’( sup

VVn(H)—VV(H)H Zt> < &. Therefore, if n >
0cBISIIAl(r) 2

(6154_?) max { Gg|5\|(fL1$§(n/s) , Ghr}, then with probability at least 1 — &

64HG,|S||Allog(n/E)  18HGr
n(l—7)? n(l—7)

sup vafn(o) - vv<0)H2 < \/

6co

D Proof of Theorem 3

Theorem 7 (Theorem 3 restated). Suppose assumption 2 and 3 hold. Then
the Hessian of the estimator uniformly converges to the Hessian of the expected
infinite-horizon discounted value function in operator norm. Specifically, if n >

(112§§I) max { Ghls”{f‘_ls)g("/g) , Gtr}, then we have

sup HVZV,L(G) — V2V (9)
6co

128 HGL|S|| Allog(n/E)  18HG,r
< + .
op n(l—7)? n(l—7)

with probability at least 1 — &, where © = BISIAl(),



Landscape Analysis of Stochastic Policy Gradient Methods 27

Proof. We adopt a similar proof strategy as in the proof of Theorem 1. Note
that the e-covering number N, of the ball BISII4(r) is upper bounded by
(BT)‘SHAl We assume 0, = {6y,...,0x.} is the e-covering net of BISIMI(r).
Let @ € BISIAl(r) be an arbitrary vector, we have ||@ — 6;|| < € for some 6; €
{61,...,0x.}. We denote V (8, 7) = limp_,00 Vir (6, 7). For any 8 € BISIAI(),
by the decomposition strategy we have

HVQW(G) — V2V (9)

> SOV (0, 7) - E[VPV(6.7)

op

1 n R 1 n R 1 n .
=~ VEV(O,7) = — > VAV (Bie) i) + — > VAV (Bi0), i) — E[VZV(8i6), 7]
=1 =1

i=1

+E[V2V(8i0), 7)] — E[V?V(0,7)]

op
Z V(0,7:) — V*V(0i(6). 7)) Z vV (6 —E[V*V(8ie), 7)]
op op
+ HE ei(e)a T)} - ]E[VQV(07 T ||op

where i(0) = arg min; 1|0 —6;]|2. Then, we define three events Ey, Eo, E3 as

1 & ~ - t
E, = sup — > (V*V(0,7:) =V V(0ie),T))|| >3 ¢
ocBISIAl(G) (| TV i op 3
E2 = sup Z V V 1(0 Tz [VQV(ai(O)a T)} Z ’
1€[N]
op

E3 = { sup HE v V 0 G)a )} - E[VQV(G’T)]HO =
0eBISIAI(

Accordingly, we have

V2V, () — V2V (0)

> t) < P(Ey) + P(Es) + P(Es).

P sup
0cBISIIAl(r)

Next, we first upper bound P(E;).

= t
P(E))=P| sup Z (V2V(0,7:) — V2V (0i0), T))|| > 3
eeBIslAl(r) || T i op
<3 1 Z V(0,7) — V2V (0,10), 7))
=t GEB\SHA\(T) n 4 [ (0)y Ti .
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|4 207200, - P60, 7)

3 o
< -E sup z sup 16 — 91(9)”2
0 BISIAl (1) 160 — O;6) |2 0cBISIIAl ()
3
< €IE sup ‘V3V H
L |genisiiai()

where the first inequality holds by Markov inequality. By Lemma 6, we have

N 1
E sup V3Vn(0)H =FE sup V3 Vo, ;)
6cBISIIAl(r) r 6cBISIIAl(r) =1 F
=E sup ‘V3 0, r H 1
0cBISIIAl(r)
g HGtE )
(1=7)
Thus,
3HG
P(Ey) < e
t(1—7)
and by letting ¢ > ?HG)S we have
P(E) < g

Secondly, we bound P(E3) as follows:

t
P(E,) =P | sup Zv V(6i(e), ) — E[V2V (6,0, 7)]|| > 3
1€[N,] op
PNSIEY 0 , ;
<|— sup P vV V<V (0;9), T > =
( € > 1E€[Ne] Z [ ( ®) )] 3

op

RER L ,
<= 2 — t° (1 — All
() exp( St (=) |og9)

where the last inequality is due to Lemma 10. Therefore, if we let

. \/64HGh(log(4/5) + |S||Allog(3r/€) + | A log(9))
- n(l—7)? ’

then we have
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Thirdly, we upper bound P(E3). Similarly,

P(E;) =P ( sup [|[E[V?V(6y0),7)] - EV?V(0,7)],, > ;)

6csSlAl-1
E[V2V(0;9), T)] — E[V?V(6,7T)]
Y. | ©) [ ap 16— 0ol >
gesiAl-1 10 — 6;(0)ll2 gcsiAl-1 3

IN

t
P | E V3V (9, >~
(], 1veni] = 1)

P2 5).

By setting € < té}I_G'Yt), we ensure that P(E3) = 0. Lastly, we let ¢ = % and

IN

N ;17 \/ 64H G (log(4/€) + |S||A| log(3r/€) + |A|log(9))
- (1-7)€ n(1—v)?

— max { 18HGyr \/ 64H G, (log(4/€) + ||| Al log(n/€) + |A]log(9)) }

n(l—-7)’ n(1—~)?

V2V, (0) — V2V (0)

to ensure IP’( sup > t) < &. Therefore, if n >
op

geslal-1
(112_85) max { Ghls”{f‘_ls)g(n/g) ; Gﬂ’}, then with probability at least 1 — &

sup HV2Vn(9) - VvV (6)
0co

128 HGL|S||Allog(n/E)  18HG,r
< + .
op n(l —7)? n(l—7)
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